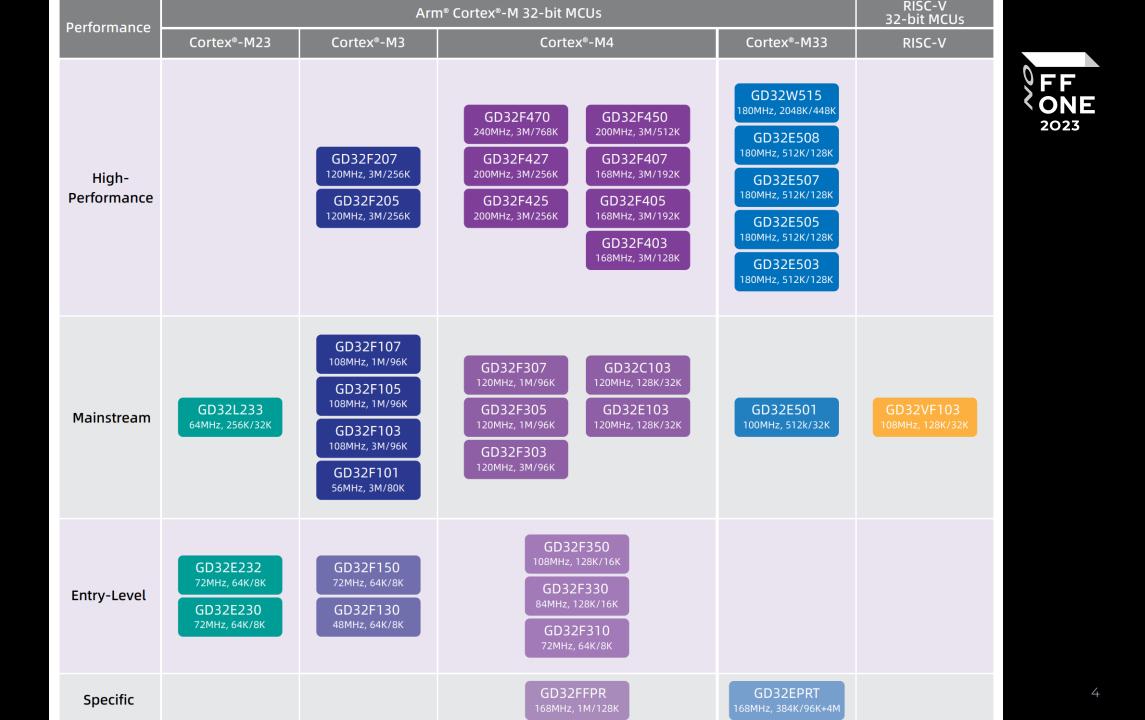


GD32 Security Protection bypass

Speaker: Alexey Kovrizhnykh

Security Researcher, Positive Technologies

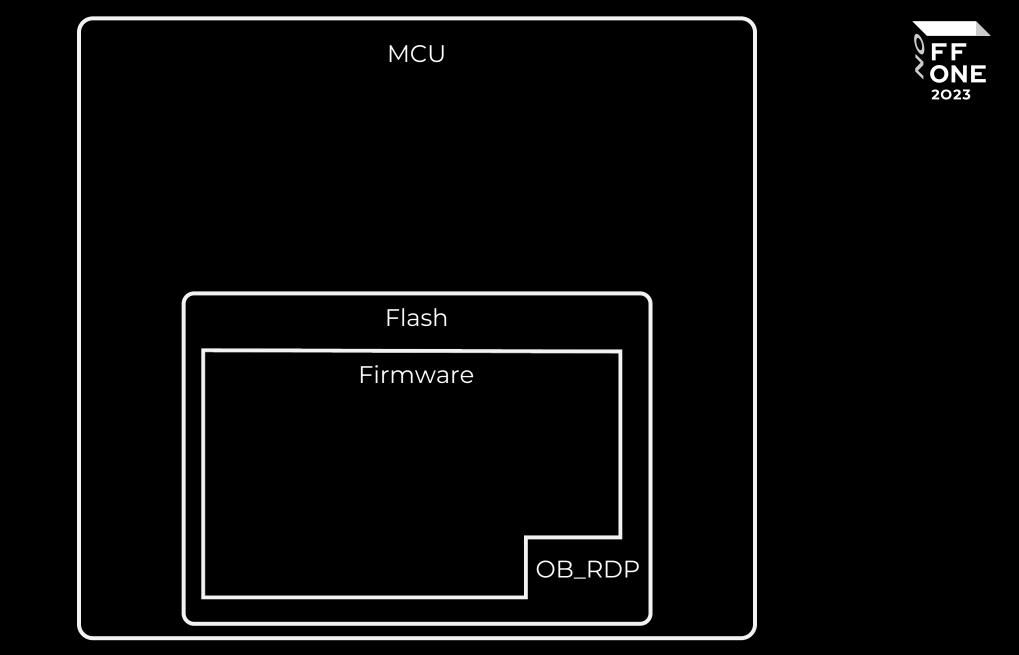
- Reverse engineer, security researcher
- positive technologies
- Flare-On 2018-2020, 2022 winner
- Articles, speeches, research: <u>alexdandy.me</u>
 - Mostly checkm8 related stuff
 - for A5(X) SoCs
 - for T2
 - even for VGA Adapters


GD32

GigaDevice

- Founded in 2005
- Beijing, China
- NOR flash memory designer
- ARM Cortex-M MCUs GD32 introduced in 2013-2015
- RISC-V MCUs GD32V introduced in 2019

Readout Protection



Software providers may need to protect their software intellectual property from malicious users or intrusive attacks

Restrictions:

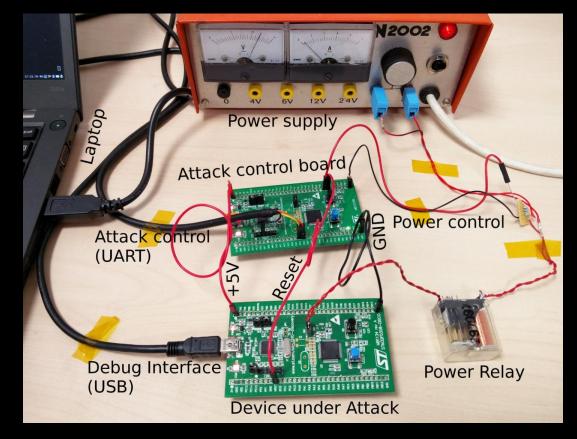
- **Technologies:**
- STM RDP
- nRF APPROTECT
- GD Security Protection
- etc.

- Level 0
 - No restrictions
- Level 1
 - Flash memory is locked (in debug mode)
- Level 2
 - JTAG/SWD interface is disabled
 - Boot from RAM or System memory is disabled
 - Irreversible and cannot be downgraded

Known Readout Protection bypasses/vulnerabilities

Shedding too much Light on a Microcontroller's Firmware Protection

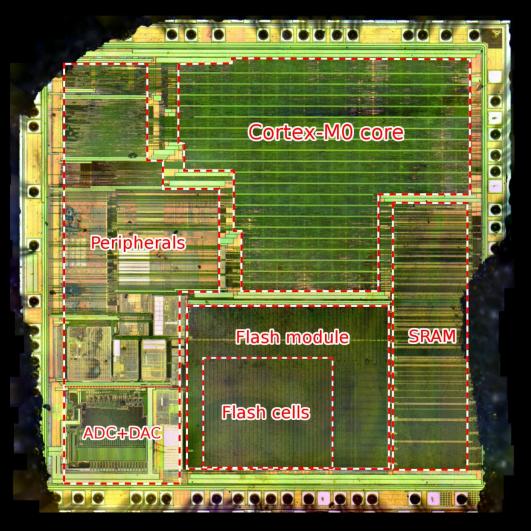
- Authors:
 - Johannes Obermaier
 - Stefan Tatschner
- Main target: STM32F0
- Cold-Boot Stepping
- Security Downgrade
- Debug Interface Exploit
- Links:
 - <u>Paper</u>
 - <u>Presentation</u>



2023

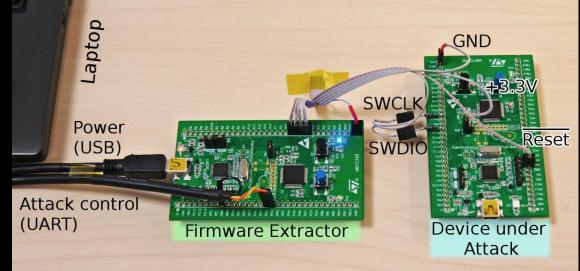
Cold-Boot Stepping

- RDP1 SRAM is still available under debugging
- Developer must zero out sensitive data from memory
- CBS technique allows you to get intermediate states of SRAM
- Examples:
 - Firmware CRC32 verification in bootloader
 - Encrypted Firmware Update in bootloader
 - etc.



UV-C Security Downgrade

- UV-C light erases flash memory cells (0 → 1)
- Flipping any bit in Option Bytes causes security downgrade (RDP2 → RDP1)



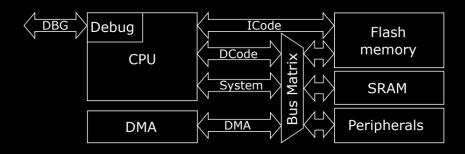
Race condition in the debug interface

- STM32F0 in RDP1: only a (bus) access triggers flash lockdown
- If the first bus access targets flash memory, valid data is sometimes returned
- Allows you to extract the entire firmware in parts of 4 bytes
- Can be achieved using J-Link (with openocd) and software controllable relay

One Exploit to Rule Them All? On the Security of Drop-in Replacement and Counterfeit Microcontrollers

- Authors:
 - Johannes Obermaier
 - Marc Schink
 - Kosma Moczek
- Main targets: STM32F103 & clones (APM, CKS, GD)
- Multiple severe debug interface vulnerabilities
- Invasive hardware attacks on multi-die systems
- A power glitch exploiting software live-patching
- Links:
 - <u>Paper</u>

Load Instruction Exploitation



- On some MCUs, the core still has direct access to the flash when RDP1 is enabled
- You can read/write core registers and the program counter, halt/resume the core, do step-by-step execution, etc.
- You can find the proper gadget by analyzing core states step-by-step (CKS32F103)
 - ldr rX, [rY]
- Sometimes you can write your own gadget into SRAM and execute it (GD32VF103)
- My keyboard firmware on Sonix SN32F248B was successfully dumped using this technique
- <u>nRF51822: Firmware dumping technique for an ARM Cortex-M0 SoC</u>

Extraction via Exceptions

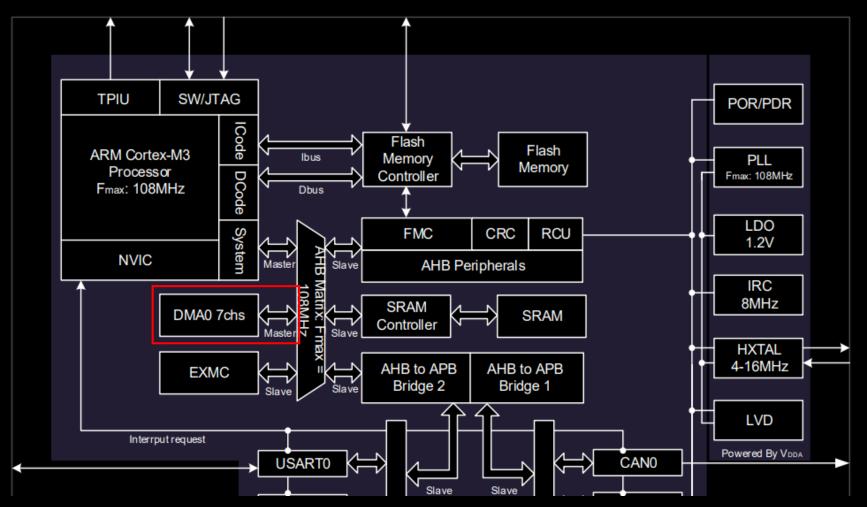
FF ONE 2023

- On an ARM Cortex-M the flash memory is accessed via two buses:
 - Data bus for data and debug accesses
 - Instruction bus for instruction and interrupt vector fetches
- On some MCUs the flash memory is blocked for the data bus but not for the instruction bus

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						← VTOR
+0x20 8 9 10 11 +0x30 12 13 14 15 +0x40 16 17 18 19 +0x50 20 21 22 23 +0x60 24 25 26 27 +0x70 28 29 30 31 +0x10 4 5 6 7 +0x20 8 9 10 11 +0x30 12 13 14 15 +0x40 16 17 18 19 +0x50 20 21 22 23 +0x60 24 25 26 27)x0800 0000		1	2	3	• VION
+0x30 12 13 14 15 +0x40 16 17 18 19 +0x50 20 21 22 23 +0x60 24 25 26 27 +0x70 28 29 30 31 +0x10 4 5 6 7 +0x20 8 9 10 11 +0x30 12 13 14 15 +0x40 16 17 18 19 +0x50 20 21 22 23 +0x60 24 25 26 27	+0x10	4	5	6	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x20	8	9	10	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x30	12	13	14	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x40	16	17	18	19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x50	20	21	22	23	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x60	24	25	26	27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0x70	28	29	30	31	
+0x20891011 $+0x30$ 12131415 $+0x40$ 16171819 $+0x50$ 20212223 $+0x60$ 24252627)x0800 0080		1	2	3	- VIOR
+0x3012131415+0x4016171819+0x5020212223+0x6024252627	+0x10	4	5	6	7	
+0x4016171819+0x5020212223+0x6024252627	+0x20	8	9	10	11	
+0x50 20 21 22 23 +0x60 24 25 26 27	+0x30	12	13	14	15	
+0x60 24 25 26 27	+0x40	16	17	18	19	
	+0x50	20	21	22	23	
+0x70 28 29 30 31	+0x60	24	25	26	27	
	+0x70	28	29	30	31	

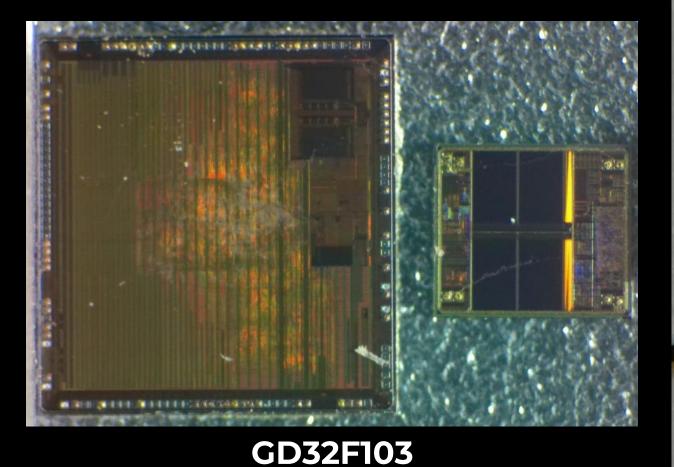
Exception(al) Failure - Breaking the STM32F1 Read-Out Protection

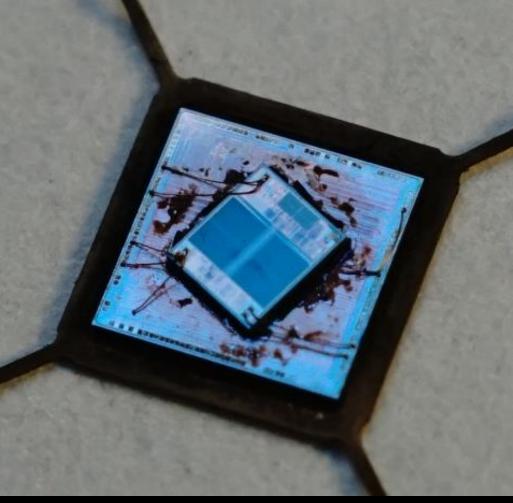
VTOR Control Flow Redirection



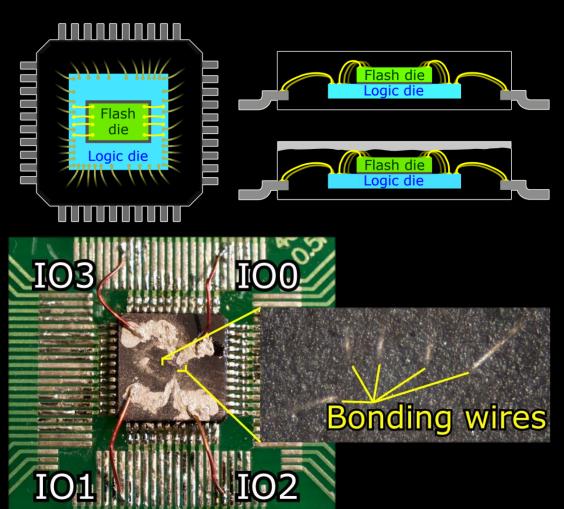
- On GD32F103 flash memory access becomes locked down for all bus masters only if CPU debug module is enabled (C_DEBUGEN bit in the DHCSR)
- Without enabling the debug module, we have access to SRAM, peripherals, etc.
- We can write a flash memory dumping firmware into SRAM
- But we cannot control the execution flow directly
- Instead, we indirectly redirect the control flow via the VTOR

DMA Access Exploitation



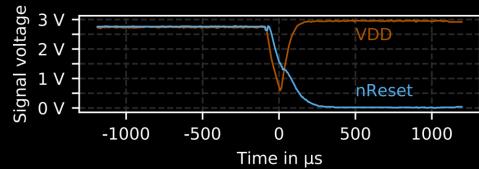

Figure 2-1. GD32F103x4/6/8/B block diagram

Invasive Data Eavesdropping/ RDP Manipulation



Invasive Data Eavesdropping/ RDP Manipulation

- We can gain access to the bonding wires for eavesdropping
- To decode the firmware, it is necessary to reverse the obfuscation mechanism: word- and bit-permutation. Hard, but possible.
- Instead, we can actively manipulate QSPI to downgrade the lock level
 - Flipping only two bits is enough

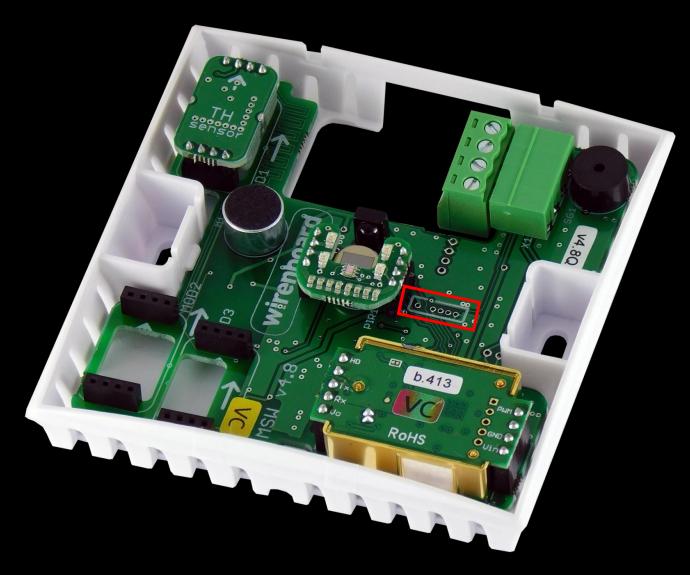


2023

Shellcode Exec. via Glitch and FPB

- APM32F103, STM32F103
- Upload a two-stage exploit firmware to the SRAM with a debugger and shut down the debugger afterwards
- 2. VDD Glitch to release RDP lock
- 3. Boot from SRAM (first stage) using BOOTO/1 pins
 - Flash is still not available (cause booting from SRAM)
 - But we can configure FPB to patch resetvector fetch
 - FPB patch survive a device reset
- 4. Boot from FLASH using BOOT0/1 pins
 - Will actually run firmware from SRAM due to FPB configuration
 - Now the flash will be fully accessible

Other materials


- Microcontroller Readback Protection: Bypasses and Defenses
- <u>nRF52 Debug Resurrection (APPROTECT Bypass)</u>
- wallet.fail Hacking the most popular cryptocurrency hardware wallets
- <u>chip.fail Glitching the silicon of the Internet-of-Things</u>

GigaVulnerability #1

WIIIII.

How it all started: GD32E230

J-Link tools vs openocd

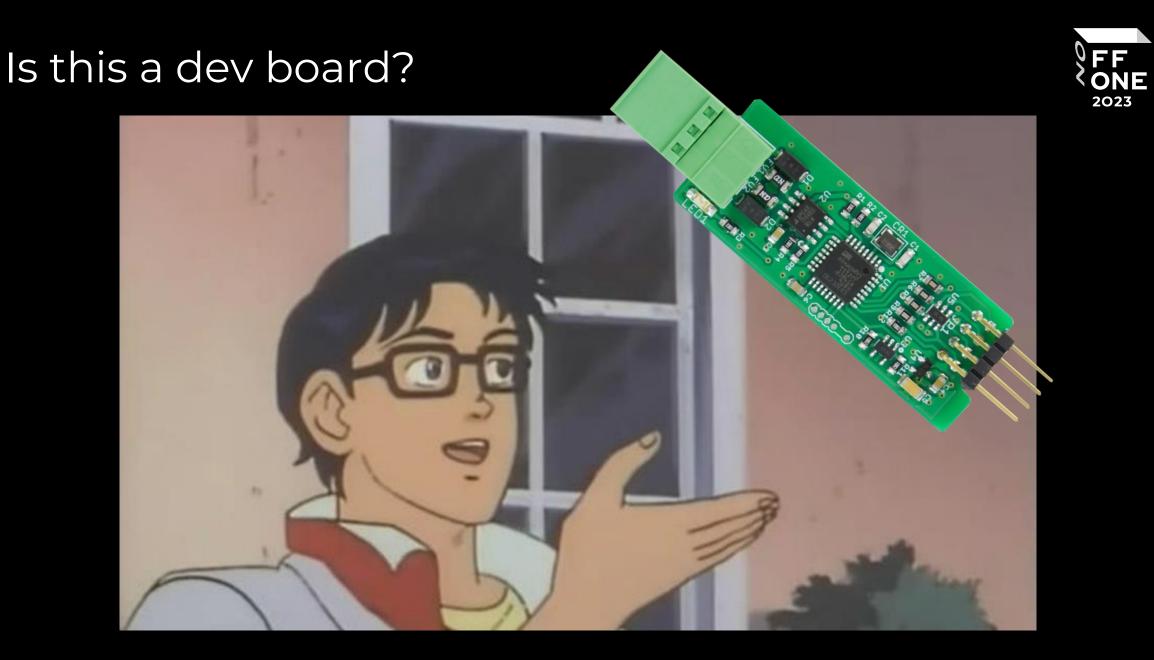
- With default settings, J-Link tools are able to read DPIDR but **openocd** cannot
- Using a logic analyzer, we found out that DPIDR is readable with NRST is pulled-down
- Verified by manually pulling NRST to GND
- reset_config srst_only srst_nogate connect_assert_srst
- Is it RDP2 or just a pin reconfiguration at startup?

Open On-Chip Debugger 0.12.0 Licensed under GNU GPL v2 For bug reports, read http://openocd.org/doc/doxygen/bugs.html Info : Listening on port 6666 for tcl connections Info : Listening on port 4444 for telnet connections Info : J-Link V9 compiled Sep 1 2016 18:29:50 Info : Hardware version: 9.60 Info : VTarget = 3.333 V Info : clock speed 100 kHz Info : SWD DPIDR 0x0bf11477

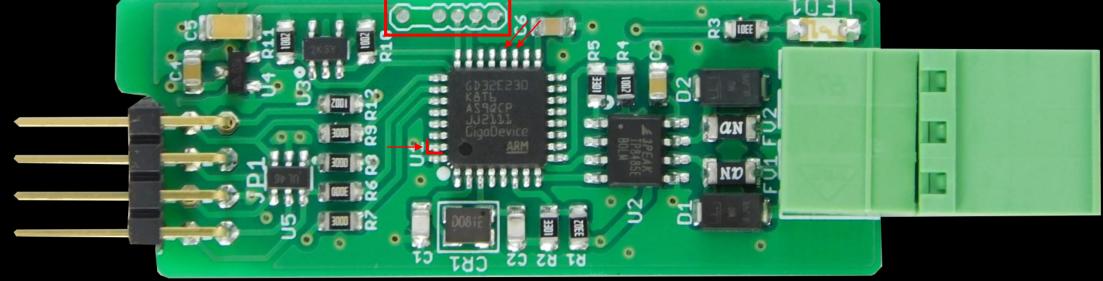
GD32 Security Protection

- No protection (OB_SPC = 0x5A)
- Protection level low (OB_SPC not in {0x5A, 0xCC})
 - In debug mode, boot from SRAM or boot from boot loader mode, all operations to main flash is forbidden
 - If program back to no protection level a mass erase for main flash will be performed
- Protection level high (OB_SPC = 0xCC)
 - When this level is programmed in debug mode, boot from SRAM or boot from boot loader mode is disabled
 - The main flash block is accessible by all operations from user code
 - The option byte cannot be erased

What can we do in RESET?


- SRAM and Flash always read as zero
- Peripherals read but always return the reset value (expected)
- Debug registers work according to documentation

> mww 0x20000000 0x1234 SRAM	9 F F
> mdw 0x20000000	
0x20000000: 00000000	
	2023
>	
> mdw 0x08000000 Flash	
0×08000000: 00000000	
>	
> mdw 0x48000000 Peripherals	
0×48000000: 28000000	
> mww 0x48000000 0x0	
> mdw 0x48000000	
0x48000000: 28000000	
> mdw 0xE000EDF0 Debug Units	
0xe000edf0: 02000000	
> mww 0xE000EDF0 0x1	
> mdw 0xE000EDF0	
0xe000edf0: 02000000	
> mww 0xE000EDF0 0xA05F0001	
> mdw 0xE000EDF0	
0xe000edf0: 02000001	
>	
> mdw 0xE0002008	
0xe0002008: 00000000	
> mww 0xE0002008 0x1234	
> mdw 0xE0002008	
0xe0002008: 00001234	

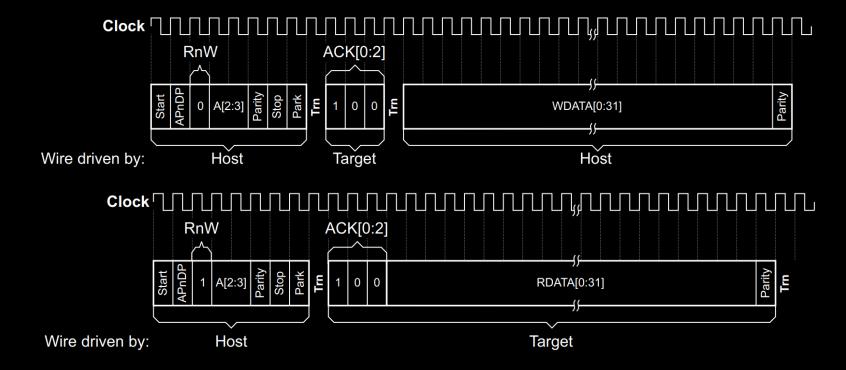

RDP2 or not RDP2?

- Still not 100% sure
- Decided to buy the same MCU, lock it and check
- MCU is easy to buy ...
- ... but not a dev board

RDP2 lock check result

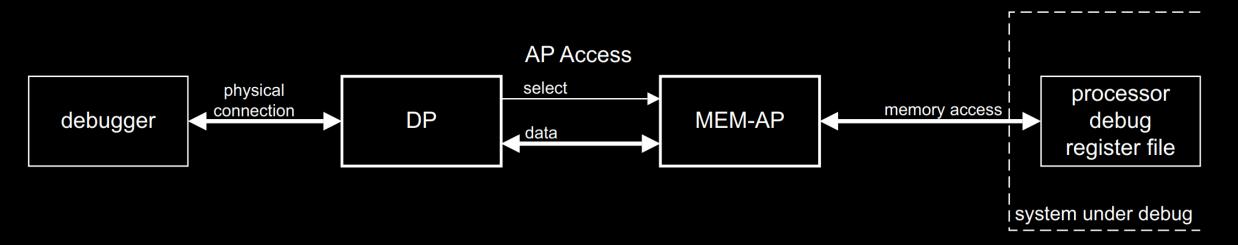
- Same behavior as before
- Almost sure it's RDP2 on the target
- It's probably impossible to dump the firmware 🛞
- but...

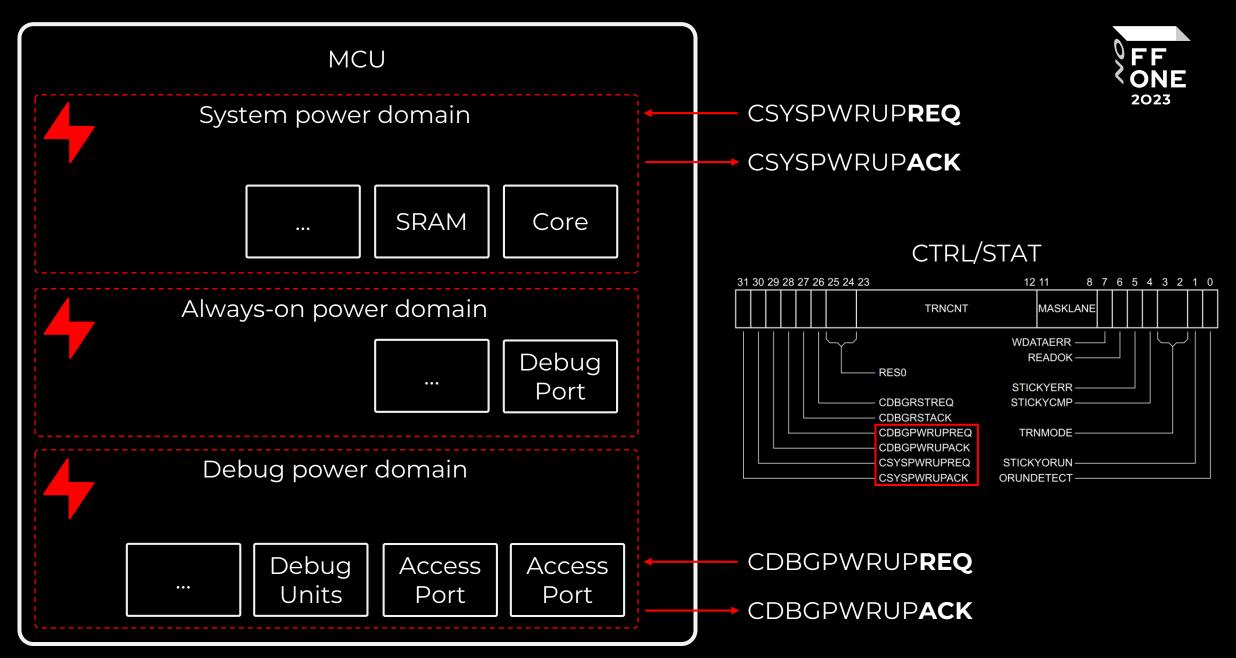
Maybe race?



About SWD

- Two wires: SWCLK, SWDIO
- Packet-based protocol to read or write registers
- Arm Debug Interface Architecture Specification

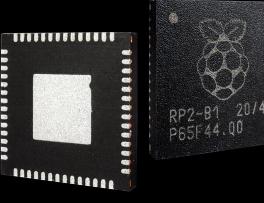




Address	Read	Write	
0x00	IDCODE	ABORT	
0x04	CTRL/STAT		
0x08		SELECT	
0x0C	RDBUFF		

Address	Function	Description
0x00	CSW	Control/Status Word Register
0x04	TAR	Transfer Address Register
0x0C	DRW	Data Read/Write Register

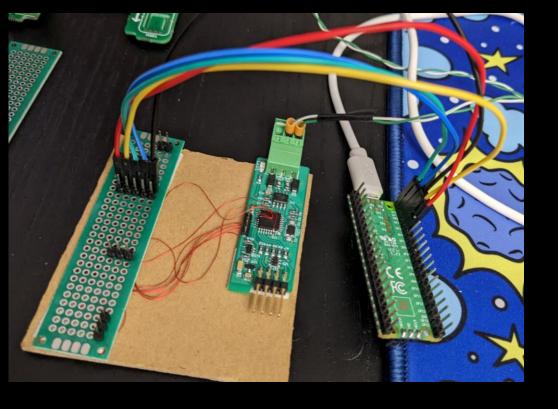
- 1. Preparation (interface reset, mode selection)
- 2. Read IDCODE (DPIDR)
- 3. Enable system & debug power domains
- 4. Select Bank 0x0 of MEM-AP
- 5. Configure CSW (e.g. 32-bit access without increments)
- 6. Configure TAR (target address)
- 7. Read DRW
 - 8. Read RDBUFF


First attempt: libjaylink + J-Link

- Easy to implement
- Works fast
- Downside: no known way to control NRST in sync with SWD
 - Due to USB, there are large floating delays
- Discovery: SWD works when NRST is HIGH
 - For this we controlled NRST with our hands
 - We have some valid ACKs for the packets

RP2040 – New Hope

- Raspberry Pi Ltd
- 32-bit dual ARM Cortex-MO+ microcontroller
- 133 MHz (sometimes works fine at 250 MHz)


PIO (Programmed Input–Output)

- Two blocks, four state machines each
- The state machines simultaneously execute programs aimed at working with input/output, and independent from the main CPU cores
- Can replace FPGA in some cases. Many protocols can be implemented
 - common protocols (if there are not enough special hardware blocks): UART, I2C, and more.
 - not very common protocols (for MCU): WS2812, DVI, VGA, and so on.
 - custom protocols
- Wide application in hardware security, especially in glitches
 - PicoFly
 - <u>ChipSHOUTER-PicoEMP</u>
 - <u>Starlink User Terminal Modchip</u>

<u>Picoprobe</u> → SwdHack

- Picoprobe allows a Pico/RP2040 to be used as a USB -> SWD/UART bridge
 - SWD implemented as PIO-program
- The PIO program was taken for SWD and the C function for it from Picoprobe
- Implementation of a simple debugger that sends certain packets and synchronously drives NRST according to the algorithm described earlier
- Control of it done over USB (UART)

Success! SRAM read

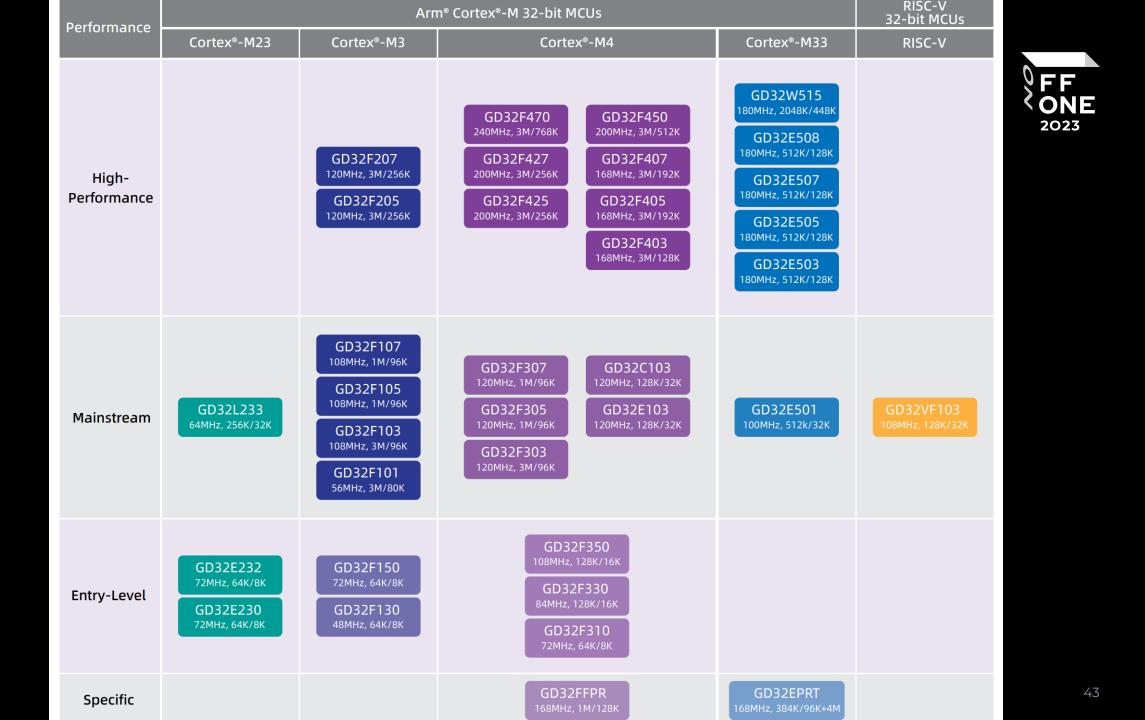
Logic Analyzer	+291.60µs ▼							µs +307.80µs						
SWD 0	O SWD W AP4	ОК)		0x20000	008)		 R APc	OK (0x0	000000		
SWCLK <u>」 </u>			เกิดกิณฑิ			กกกกกกก			บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ		บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ	กกกกิกก		
SWDIO J [—] l _ x 1									+1.45µs/145					
NRST J Z Z	2													

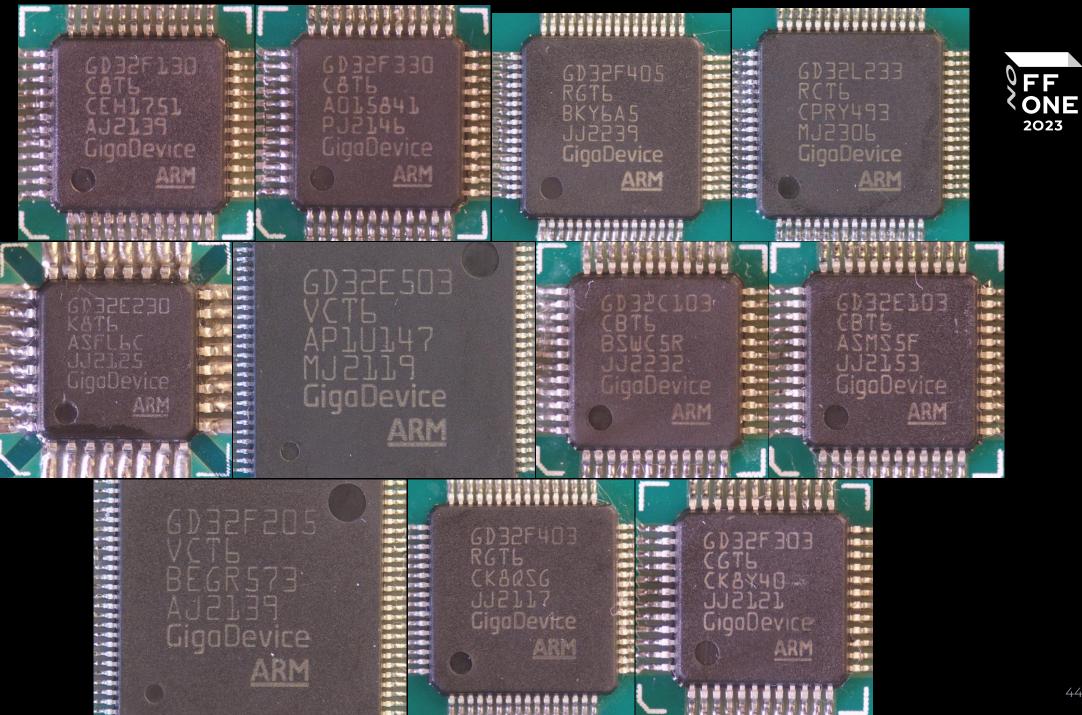
Logic Analyzer		3.60µs +365.40µs					
SWD <u>0</u> D	SWD	RDBUFF	ОК	0x0)800186c		
SWCLK <u>J [—] l _ <mark>II</mark> 0</u>						תתתתת	ЛЛ
SWDIO <u>5 - 1 - 1</u>	<u> </u>						
NRST <u>」 1 1 2</u>		- 					

Logic Analyzer					+367.50µs +369.00µs +370.
SWD <u>0</u> D	SWD	W APc	ОК	0xdeadbeef	
SWCLK <u>5 [–] 1 – <mark>1</mark></u> 0					
SWDIO <u>J – l _ I</u> 1					

SRAM write

Results




- We can read/write SRAM, Peripherals
 - Option Bytes have been checked for RDP2
 - Write is almost useless because of reset
- Still no direct access to Flash memory 🛞
- Cold-Boot Stepping (CBS) can be adopted
- In simple cases, CBS is not needed, a snapshot of SRAM taken at certain moments when waiting is enough
 - Encrypted WB firmware was decrypted in this way
- Also discovered: the readout lock is activated based on CDBGPWRUP and can be deactivated without a power-on reset

Next steps

- Test the vulnerability on other families of GD32 microcontrollers
- Difficulty in checking all microcontrollers
 - Need to select one chip per family
- Other difficulties
 - Possibly need to group some families of chips according to defined criteria
- Decision: one chip per common manual
- Sourcing
 - ChipDip very few options at that time (end of March 2023)
 - AliExpress almost all found (delivered at the beginning of May 2023)
 - Some were bought relatively recently (August 2023)

46

Success table

Family	MCU	Release	RDP2	GigaVulnerability #1
GD32F1x0	GD32F130C8T6	AJ2139		
GD32F3x0	GD32F330C8T6	PJ2146		No
GD32F4xx	GD32F405RGT6	JJ2239	Yes	
GD32L23x	GD32L233RCT6	MJ2306	res	
GD32E23x	GD32E230K8T6	JJ2125		Yes
GD32E50x	GD32E503VCT6	MJ2119		
GD32C10x	GD32C103CBT6	JJ2232		
GD32E10x	GD32E103CBT6	JJ2153		
GD32F20x	GD32F205VCT6	AJ2139	No	
GD32F30x	GD32F303CGT6	JJ2121		
GD32F403	GD32F403RGT6	JJ2117		

GigaVulnerability #2

WIIIII.

CDBGPWRUPREQ

- As noted earlier, the readout protection lock is triggered when the Debug Domain is enabled (CDBGPWRUPREQ)
- Theory: maybe the readout protection lock can be disabled the same way in runtime?
- Proven: Yes! It can be used for RDP1 bypass
- Use the debugger to load into SRAM and run the firmware for dumping
 - Use UART as the dumping channel
- 2. Reset DP CDBGPWRUPREQ bit (openocd: chip.dap dpreg 0x4 0x0)
- 3. Signal the firmware to begin dumping
- 4. ???

5. PROFIT

Success table

Family	MCU	Release	RDP2	GigaVulnerability #1	GigaVulnerability #2
GD32F1x0	GD32F130C8T6	AJ2139			Yes
GD32F3x0	GD32F330C8T6	PJ2146		Νο	No
GD32F4xx	GD32F405RGT6	JJ2239	Yes		Yes
GD32L23x	GD32L233RCT6	MJ2306	res		No
GD32E23x	GD32E230K8T6	JJ2125		Yes	
GD32E50x	GD32E503VCT6	MJ2119			
GD32C10x	GD32C103CBT6	JJ2232			
GD32E10x	GD32E103CBT6	JJ2153			Yes
GD32F20x	GD32F205VCT6	AJ2139	No		
GD32F30x	GD32F303CGT6	JJ2121			
GD32F403	GD32F403RGT6	JJ2117			

GigaVulnerability #3

WIIIII.

Comeback to F-series

- SWD not working immediately after high NRST
- Accidental discovery: the attack works after power-up reset!
 - Power off
 - Pull NRST to GND
 - Power on
- Race window is much larger than in the E-series
 - More than 1600 μS on GD32F130 vs ~20 μS on GD32E230
 - Seems useless, because all SRAM is in an uninitialized state
- Can we get something useful out of this?

First attempts

- Manipulation with VTOR?
 - Seems to take a reset value anyway
- Core debugging?
 - It seems that if I enable C_DEBUG during the race window, the core won't start (even in RDP0)
- Voltage Glitch?

Power-Analysis

)ms		+10.00ms	+15.00ms	+20.00ms	+25.00ms
		.			
			32 times	S	
	andranandranandranand				

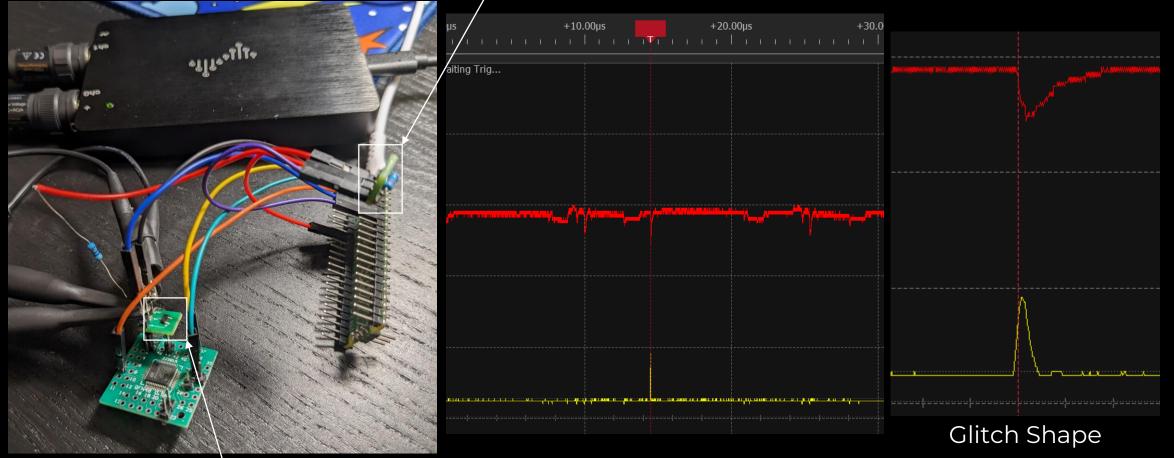
Power-Analysis

+0.50r			50ms +2.00			00ms +3.50
	,	^ĸ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		and and a state of the state of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Mananananananananananananananananananan	สมพรรมสมพรรมสมพรรม		na an a	n na ann ann ann ann ann ann ann ann an	ทางการสถาสารสุขาวสารอาสารสการส
		1.8ms				

Power-Analysis

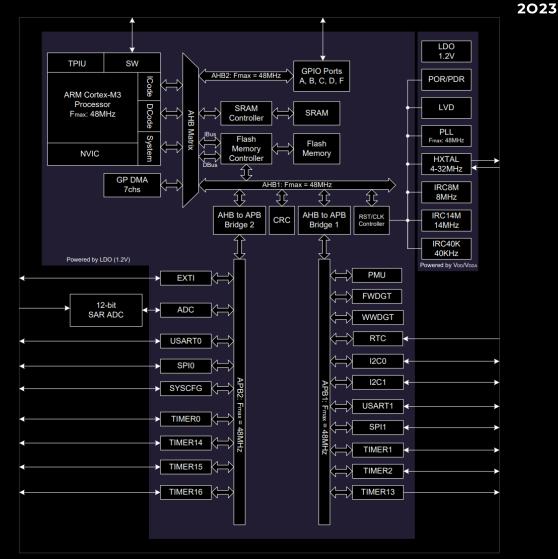
				+0.50ms	
<mark>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</mark>					
<mark>ॷॖॖॖॖॖॖॖ</mark> ॴॖॖॖॾॻॖॖॣॾॶॖॾॾॖॖॾॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾॶॾ	₰ ৾੶੶ੑੑੑੑੑੑਫ਼ਫ਼ੑੑਫ਼੶ਫ਼ੑੑਫ਼ਫ਼ੑਫ਼੶ਗ਼ੑਫ਼ਜ਼ੑਫ਼ਖ਼ੑਖ਼ਜ਼ੑੑ	╾ᡲ═ᡗ┉ᢪ┉ᡗ╥╬╼ᡭ┉ੵਸ਼ਫ਼ਖ਼๛ਖ਼๛ਖ਼	┉ ┉	╻╾ ╬╍╗╍╗╗╔╖╗╧╌╗╧╌╢┷╬╍┠╸ ┚	╼╬┈ ╗╒╾┊╼┋┍╌╏╍┑┟╩╎┍╍ ╏╍┥┶┥ <mark>╞</mark> ┎╍╻╍╸┍╼┥ ^{┝┷} ╻╸
			54 times		

Power-Analysis: interpretation of results



	+3.5
	, and a state of the
	a da anta da
Bootloader 192×16=0xC00 bytes Bootloader 64×16=0x400 bytes 32 times	
III???Option BytesFirst half of Flash2×16 bytes0x400×32=32KiB	

My First Voltage Glitcher (which doesn't work)


Power control

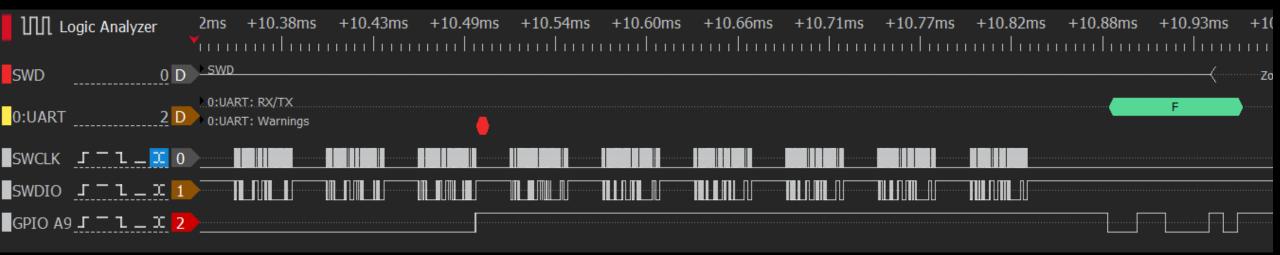
IRLML2502 N-channel MOSFET like in ChipWhisperer-Lite

Another attack through SWD

- Core, SRAM, FMC all tested
- Many untested peripherals TBD
- Maybe something will be useful even after disabling SWD
- Let's start simple

FF

Peripheral: PIN pull-up



Logic Analyzer	.00µs	+10300.00µs	+10310.00µs	+10320.00µs	+10330.00µs	+10340.00µs	+10350.00µs	+10360.00µs	+10370.00µs	+10380.00µs	+10390.00µs	+10400.00µs	+10410.00µs	+10420.00µs	+10430.00µs	+10440.00µs	+1045(
-																	1
SWD 0 D	SWD	0x480000		0x00000200)			0x48000014		0x0000000			(0x4	8000014	Ox0000	200	
SWCLK <u>」 </u>																	
SWDIO <u>J – I I</u>																	
GPIO A9 <u>Ј – </u> 1 <u>– </u> 1 <mark>2</mark>																	

```
// GD32F1x0 GPI0
// rcu
swd_memwrite_noreset(0x40021014, 0x00020014); swdsleep(); // gpioa
// gpio
swd_memwrite_noreset(0x48000000, 0x28040000); swdsleep(); // gpio A9 output mode
swd_memwrite_noreset(0x48000014, 1 << 9); swdsleep(); // gpio A9 HIGH
swd_memwrite_noreset(0x48000014, 0); swdsleep(); // gpio A9 LOW
swd_memwrite_noreset(0x48000014, 1 << 9); swdsleep(); // gpio A10 HIGH
swd_memwrite_noreset(0x48000014, 0); swdsleep(); // gpio A9 LOW</pre>
```

Peripheral: UART

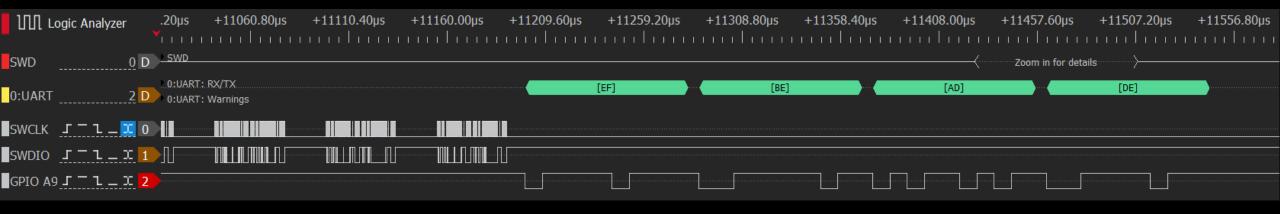
// GD32F1x0 GPI0

// rcu

swd_memwrite_noreset(0x40021014, 0x00020014); swdsleep(); // gpioa
swd_memwrite_noreset(0x40021018, 0x00004000); swdsleep(); // usart0

// gpio

swd_memwrite_noreset(0x48000000, 0x28280000); swdsleep(); // gpio A9-A10 AF swd_memwrite_noreset(0x48000004, 0x00000000); swdsleep(); // output mode swd_memwrite_noreset(0x48000008, 0x0c000000); swdsleep(); // output speed swd_memwrite_noreset(0x4800000c, 0x24140000); swdsleep(); // pull-up/down cfg swd_memwrite_noreset(0x48000024, 0x00000110); swdsleep(); // AF select (USART0)


// usart

swd_memwrite_noreset(0x40013800, 0x0000000c); swdsleep(); swd_memwrite_noreset(0x40013808, 0x00000080); swdsleep(); swd_memwrite_noreset(0x4001380c, 0x00000045); swdsleep(); swd_memwrite_noreset(0x40013800, 0x0000000d); swdsleep();

swd_memwrite_noreset(0x40013828, 'F'); swdsleep();

Peripheral: UART+DMA from RAM?

<pre>swd_memwrite_noreset(0x20000000,</pre>	<pre>0xdeadbeef);</pre>	<pre>swdsleep();</pre>	
<pre>swd_memwrite_noreset(0x40020020,</pre>	0x00000004);	<pre>swdsleep(); //</pre>	DMA_CHxCNT
<pre>swd_memwrite_noreset(0x40020024,</pre>	0x40013828);	<pre>swdsleep(); //</pre>	DMA_CHxPADDR
<pre>swd_memwrite_noreset(0x40020028,</pre>	0x20000000);	<pre>swdsleep(); //</pre>	DMA_CHxMADDR
<pre>swd_memwrite_noreset(0x4002001C,</pre>	0x00000091);	<pre>swdsleep(); //</pre>	DMA_CHxCTL

Peripheral: UART+DMA from FLASH???

Logic Analyzer	+10.64ms +12.77ms +14.90ms +17.03ms +19.15ms +21.28ms +23.41ms +25.54ms +27.67ms +29.79ms +31.92ms +34
SWD 0 D	SWD
0:UART2 D	0:UART: RX/TX
SWCLK <u>572_</u> 0	
SWDIO <u>J – l – l</u> 1	
GPIO A9 <mark>Ј [—] Ղ _ Ղ 2</mark>	
	+18.53881ms/1853881

Logic Analyzer		+28.41ms	+28.60ms	+28.78ms				+29.53ms				+30.28ms	+30.46m:
SWD	<u>D</u>	SWD											Zoom i
0:UART	2 <u>D</u>	0:UART: RX/TX 0:UART: Warnings	[00]	[20] [00]	[20] [91]	[01] [00] [08] [D9] [0:	1] [00] [08]	[D9] [01]	[00] [08]	[D9] [01]	[00] [08]	[D9] [01] Zoom i
SWCLK <u>」-1</u>	0		0x2	200020	00 0x0	800019	1 0x08	30001D9	0x080	3001D9	0x080	001D9 `	
SWDIO <u>J – l – </u> I	1												
GPIO A9 <u>Ј – 1</u> _ 1	2]			

Success table

Family	MCU	Release	RDP2	GigaVulnerability #1	GigaVulnerability #2	GigaVulnerability #3
GD32F1x0	GD32F130C8T6	AJ2139			Yes	
GD32F3x0	GD32F330C8T6	PJ2146	Yes	No 	No	Yes
GD32F4xx	GD32F405RGT6	JJ2239			Yes	
GD32L23x	GD32L233RCT6	MJ2306		Yes	No	
GD32E23x	GD32E230K8T6	JJ2125				No
GD32E50x	GD32E503VCT6	MJ2119				
GD32C10x	GD32C103CBT6	JJ2232				
GD32E10x	GD32E103CBT6	JJ2153			Yes	
GD32F20x	GD32F205VCT6	AJ2139	No			
GD32F30x	GD32F303CGT6	JJ2121				
GD32F403	GD32F403RGT6	JJ2117				

FMC: E/L vs F family

- GD32E23x
 - 0~2 waiting time within 64K bytes when CPU executes an instruction
- Almost the same for GD32L23x
- E/L doesn't cache flash pages on startup
- Small delay on each reset to read Option Bytes (~20µS, acceptable)
- Small race window on each reset

- GD32F1x0
 - No waiting time within 32K bytes when CPU executes an instruction
 - A long delay when fetching 32K ~ 64K bytes data from flash
- Long delay on power-on reset (~18ms)
 - Needed to fill the cache
- Option Bytes also cached
- Big race window on power-on reset
- No race window on other resets

Success table

Family	MCU	Release	RDP2	GigaVulnerability #1	GigaVulnerability #2	GigaVulnerability #3
GD32F1x0	GD32F130C8T6	AJ2139	Yes		Yes	
GD32F3x0	GD32F330C8T6	PJ2146		No	No	Yes
GD32F4xx	GD32F405RGT6	JJ2239			Yes	
GD32L23x	GD32L233RCT6	MJ2306		Yes	No	
GD32E23x	GD32E230K8T6	JJ2125			Yes	No
GD32E50x	GD32E503VCT6	MJ2119				
GD32C10x	GD32C103CBT6	JJ2232				
GD32E10x	GD32E103CBT6	JJ2153				
GD32F20x	GD32F205VCT6	AJ2139	No			
GD32F30x	GD32F303CGT6	JJ2121				
GD32F403	GD32F403RGT6	JJ2117				

Results

- Lots of experience in security of microcontrollers
- New techniques to bypass readout protection
- Three vulnerabilities reported to GigaDevice

Conclusions

- Some implementations of readout protection technologies are far from perfect
- Consider this when developing your own devices
 - Restriction of physical access to the chip
 - Control the accessibility of the end-product
 - Other points
- In any case, one day your defense will be broken.
 Be prepared for this

###