
GigaVulnerability:
GD32 Security Protection bypass

Speaker: Alexey Kovrizhnykh
Security Researcher, Positive Technologies

@a1exdandy



2

whoami

• Reverse engineer, security researcher

• Flare-On 2018-2020, 2022 winner

• Articles, speeches, research: a1exdandy.me
• Mostly checkm8 related stuff

• for A5(X) SoCs
• for T2
• even for VGA Adapters

https://a1exdandy.me/


3

GD32

• GigaDevice

• Founded in 2005

• Beijing, China

• NOR flash memory designer

• ARM Cortex-M MCUs GD32 introduced in 
2013-2015

• RISC-V MCUs GD32V introduced in 2019



4



5

Readout Protection

Technologies:

• STM - RDP

• nRF - APPROTECT

• GD - Security Protection

• etc.

Restrictions:

• Level 0
• No restrictions

• Level 1
• Flash memory is locked (in debug mode)

• Level 2
• JTAG/SWD interface is disabled
• Boot from RAM or System memory is 

disabled
• Irreversible and cannot be downgraded

Software providers may need to protect their software intellectual 
property from malicious users or intrusive attacks



6

OB_RDP

Flash

Firmware

MCU



Known Readout 
Protection 
bypasses/vulnerabilities



8

Shedding too much Light on a 
Microcontroller’s Firmware Protection

• Authors:
• Johannes Obermaier
• Stefan Tatschner

• Main target: STM32F0

• Cold-Boot Stepping

• Security Downgrade

• Debug Interface Exploit

• Links:
• Paper
• Presentation

https://www.usenix.org/system/files/conference/woot17/woot17-paper-obermaier.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/ResearchExcellence/firmwareprotection-pres-woot17.pdf


9

Cold-Boot Stepping

• RDP1 - SRAM is still available 
under debugging

• Developer must zero out sensitive 
data from memory

• CBS technique allows you to get 
intermediate states of SRAM

• Examples:
• Firmware CRC32 verification in 

bootloader
• Encrypted Firmware Update in 

bootloader
• etc.



10

UV-C Security Downgrade

• UV-C light erases flash memory 
cells (0 → 1)

• Flipping any bit in Option Bytes 
causes security downgrade
(RDP2 → RDP1)



11

Race condition in the debug interface

• STM32F0 in RDP1: only a (bus) access triggers flash lockdown

• If the first bus access targets flash memory, valid data is sometimes 
returned

• Allows you to extract the entire firmware in parts of 4 bytes

• Can be achieved using J-Link (with openocd) and software 
controllable relay



12

One Exploit to Rule Them All? On the Security 
of Drop-in Replacement and Counterfeit 
Microcontrollers
• Authors:

• Johannes Obermaier
• Marc Schink
• Kosma Moczek

• Main targets: STM32F103 & clones (APM, CKS, GD)

• Multiple severe debug interface vulnerabilities

• Invasive hardware attacks on multi-die systems

• A power glitch exploiting software live-patching

• Links:
• Paper

https://www.usenix.org/system/files/woot20-paper-obermaier.pdf


13

Load Instruction Exploitation
• On some MCUs, the core still has direct access to the flash when 

RDP1 is enabled

• You can read/write core registers and the program counter, 
halt/resume the core, do step-by-step execution, etc.

• You can find the proper gadget by analyzing core states step-by-step 
(CKS32F103)
• ldr rX, [rY]

• Sometimes you can write your own gadget into SRAM and execute it 
(GD32VF103)

• My keyboard firmware on Sonix SN32F248B was successfully 
dumped using this technique

• nRF51822: Firmware dumping technique for an ARM Cortex-M0 SoC

https://blog.includesecurity.com/2015/11/firmware-dumping-technique-for-an-arm-cortex-m0-soc/


14

Extraction via Exceptions

• On an ARM Cortex-M the flash 
memory is accessed via two buses:
• Data bus for data and debug accesses
• Instruction bus for instruction and 

interrupt vector fetches

• On some MCUs the flash memory 
is blocked for the data bus but not 
for the instruction bus

Exception(al) Failure - Breaking the 

STM32F1 Read-Out Protection

https://blog.zapb.de/stm32f1-exceptional-failure/


15

VTOR Control Flow Redirection

• On GD32F103 flash memory access becomes locked down for all bus 
masters only if CPU debug module is enabled (C_DEBUGEN bit in 
the DHCSR)

• Without enabling the debug module, we have access to SRAM, 
peripherals, etc.

• We can write a flash memory dumping firmware into SRAM

• But we cannot control the execution flow directly

• Instead, we indirectly redirect the control flow via the VTOR



16

DMA Access Exploitation



17

Invasive Data Eavesdropping/
RDP Manipulation

GD32F103



18

Invasive Data Eavesdropping/
RDP Manipulation

• We can gain access to the 
bonding wires for 
eavesdropping

• To decode the firmware, it is 
necessary to reverse the 
obfuscation mechanism: 
word- and bit-permutation. 
Hard, but possible.

• Instead, we can actively 
manipulate QSPI to 
downgrade the lock level
• Flipping only two bits is enough



19

Shellcode Exec. via Glitch and FPB
• APM32F103, STM32F103
1. Upload a two-stage exploit firmware to the 

SRAM with a debugger and shut down the 
debugger afterwards

2. VDD Glitch to release RDP lock
3. Boot from SRAM (first stage) using BOOT0/1 

pins
• Flash is still not available (cause booting from 

SRAM)
• But we can configure FPB to patch reset-

vector fetch
• FPB patch survive a device reset

4. Boot from FLASH using BOOT0/1 pins
• Will actually run firmware from SRAM due to 

FPB configuration
• Now the flash will be fully accessible



20

Other materials

• Microcontroller Readback Protection: Bypasses and Defenses

• nRF52 Debug Resurrection (APPROTECT Bypass)

• wallet.fail - Hacking the most popular cryptocurrency hardware 
wallets

• chip.fail - Glitching the silicon of the Internet-of-Things

https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
https://limitedresults.com/2020/06/nrf52-debug-resurrection-approtect-bypass/
https://media.ccc.de/v/35c3-9563-wallet_fail
https://chip.fail/


GigaVulnerability #1



22

How it all started: GD32E230



23

J-Link tools vs openocd

• With default settings, J-Link tools are able to 
read DPIDR but openocd cannot

• Using a logic analyzer, we found out that DPIDR 
is readable with NRST is pulled-down

• Verified by manually pulling NRST to GND

• reset_config srst_only srst_nogate
connect_assert_srst

• Is it RDP2 or just a pin reconfiguration at 
startup?



24

GD32 Security Protection

• No protection (OB_SPC = 0x5A)

• Protection level low (OB_SPC not in {0x5A, 0xCC})
• In debug mode, boot from SRAM or boot from boot loader mode, all operations 

to main flash is forbidden
• If program back to no protection level a mass erase for main flash will be 

performed

• Protection level high (OB_SPC = 0xCC)
• When this level is programmed in debug mode, boot from SRAM or boot from 

boot loader mode is disabled
• The main flash block is accessible by all operations from user code
• The option byte cannot be erased



25

What can we do in RESET?

• SRAM and Flash always read as zero

• Peripherals read but always return the 
reset value (expected)

• Debug registers work according to 
documentation

SRAM

Flash

Peripherals

Debug Units



26

RDP2 or not RDP2? 

• Still not 100% sure

• Decided to buy the same MCU, lock it and check

• MCU is easy to buy …

• … but not a dev board



27

Is this a dev board?



28



29

RDP2 lock check result

• Same behavior as before

• Almost sure it's RDP2 on the target

• It's probably impossible to dump the firmware 

• but…



30

Maybe race?

NRST

SWD available



31

About SWD

• Two wires: SWCLK, SWDIO

• Packet-based protocol to read or write registers

• Arm Debug Interface Architecture Specification



32

DP MEM-AP

Address Read Write

0x00 IDCODE ABORT

0x04 CTRL/STAT

0x08 SELECT

0x0C RDBUFF

Address Function Description

0x00 CSW Control/Status 
Word Register

0x04 TAR Transfer Address 
Register

0x0C DRW Data Read/Write 
Register



33

CTRL/STAT

MCU

Debug power domain

System power domain

Always-on power domain

CDBGPWRUPREQ

CDBGPWRUPACK

Debug 
Port

CSYSPWRUPREQ

CSYSPWRUPACK

…

Access 
Port

Debug 
Units…

CoreSRAM…

Access 
Port



34

Memory read

1. Preparation (interface reset, mode selection)

2. Read IDCODE (DPIDR)

3. Enable system & debug power domains

4. Select Bank 0x0 of MEM-AP

5. Configure CSW (e.g. 32-bit access without increments)

6. Configure TAR (target address)

7. Read DRW

8. Read RDBUFF



35

First attempt: libjaylink + J-Link

• Easy to implement

• Works fast

• Downside: no known way to control NRST in sync with SWD
• Due to USB, there are large floating delays

• Discovery: SWD works when NRST is HIGH
• For this we controlled NRST with our hands
• We have some valid ACKs for the packets



36

RP2040 – New Hope

• Raspberry Pi Ltd

• 32-bit dual ARM Cortex-M0+ microcontroller

• 133 MHz (sometimes works fine at 250 MHz)



37

PIO (Programmed Input–Output)
• Two blocks, four state machines each
• The state machines simultaneously execute programs aimed at 

working with input/output, and independent from the main CPU 
cores

• Can replace FPGA in some cases. Many protocols can be 
implemented
• common protocols (if there are not enough special hardware blocks): UART, 

I2C, and more.
• not very common protocols (for MCU): WS2812, DVI, VGA, and so on.
• custom protocols

• Wide application in hardware security, especially in glitches
• PicoFly
• ChipSHOUTER-PicoEMP
• Starlink User Terminal Modchip

https://github.com/newaetech/chipshouter-picoemp
https://github.com/KULeuven-COSIC/Starlink-FI


38

Picoprobe → SwdHack
• Picoprobe allows a Pico/RP2040 to 

be used as a USB → SWD/UART 
bridge
• SWD implemented as PIO-program

• The PIO program was taken for 
SWD and the C function for it from 
Picoprobe

• Implementation of a simple 
debugger that sends certain 
packets and synchronously drives 
NRST according to the algorithm 
described earlier

• Control of it done over USB (UART)

https://github.com/raspberrypi/picoprobe


39

Success! SRAM read



40

SRAM write



41

Results

• We can read/write SRAM, Peripherals
• Option Bytes have been checked for RDP2
• Write is almost useless because of reset

• Still no direct access to Flash memory 

• Cold-Boot Stepping (CBS) can be adopted

• In simple cases, CBS is not needed, a snapshot of SRAM taken at 
certain moments when waiting is enough
• Encrypted WB firmware was decrypted in this way

• Also discovered: the readout lock is activated based on CDBGPWRUP 
and can be deactivated without a power-on reset



42

Next steps

• Test the vulnerability on other families of GD32 microcontrollers

• Difficulty in checking all microcontrollers
• Need to select one chip per family

• Other difficulties
• Possibly need to group some families of chips according to defined criteria

• Decision: one chip per common manual

• Sourcing
• ChipDip - very few options at that time (end of March 2023)
• AliExpress - almost all found (delivered at the beginning of May 2023)
• Some were bought relatively recently (August 2023)



43



44



45



46

Success table

Family MCU Release RDP2 GigaVulnerability #1

GD32F1x0 GD32F130C8T6 AJ2139

Yes

NoGD32F3x0 GD32F330C8T6 PJ2146

GD32F4xx GD32F405RGT6 JJ2239

GD32L23x GD32L233RCT6 MJ2306

YesGD32E23x GD32E230K8T6 JJ2125

GD32E50x GD32E503VCT6 MJ2119

GD32C10x GD32C103CBT6 JJ2232

No

GD32E10x GD32E103CBT6 JJ2153

GD32F20x GD32F205VCT6 AJ2139

GD32F30x GD32F303CGT6 JJ2121

GD32F403 GD32F403RGT6 JJ2117



GigaVulnerability #2



48

CDBGPWRUPREQ

• As noted earlier, the readout protection lock is triggered when the 
Debug Domain is enabled (CDBGPWRUPREQ)

• Theory: maybe the readout protection lock can be disabled the same 
way in runtime?

• Proven: Yes! It can be used for RDP1 bypass
1. Use the debugger to load into SRAM and run the firmware for 

dumping
• Use UART as the dumping channel

2. Reset DP CDBGPWRUPREQ bit (openocd: chip.dap dpreg 0x4 0x0)
3. Signal the firmware to begin dumping
4. ???
5. PROFIT



49

Success table

Family MCU Release RDP2 GigaVulnerability #1 GigaVulnerability #2

GD32F1x0 GD32F130C8T6 AJ2139

Yes

No

Yes

GD32F3x0 GD32F330C8T6 PJ2146 No

GD32F4xx GD32F405RGT6 JJ2239 Yes

GD32L23x GD32L233RCT6 MJ2306

Yes

No

GD32E23x GD32E230K8T6 JJ2125

Yes

GD32E50x GD32E503VCT6 MJ2119

GD32C10x GD32C103CBT6 JJ2232

No

GD32E10x GD32E103CBT6 JJ2153

GD32F20x GD32F205VCT6 AJ2139

GD32F30x GD32F303CGT6 JJ2121

GD32F403 GD32F403RGT6 JJ2117



GigaVulnerability #3



51

Comeback to F-series

• SWD not working immediately after high NRST

• Accidental discovery: the attack works after power-up reset!
• Power off
• Pull NRST to GND
• Power on

• Race window is much larger than in the E-series
• More than 1600 µS on GD32F130 vs ~20 µS on GD32E230
• Seems useless, because all SRAM is in an uninitialized state

• Can we get something useful out of this?



52

First attempts

• Manipulation with VTOR?
• Seems to take a reset value anyway 

• Core debugging?
• It seems that if I enable C_DEBUG during

the race window, the core won't start (even in RDP0)

• Voltage Glitch?



53

Power-Analysis

32 times



54

Power-Analysis

1.8ms



55

Power-Analysis

64 times



56

Power-Analysis: interpretation of results

???
2×16 bytes

Option Bytes
16 bytes

Bootloader
192×16=0xC00 bytes

Flash Page
64×16=0x400 bytes

32 times

First half of Flash
0x400×32=32KiB



57

My First Voltage Glitcher (which doesn't work)

IRLML2502 N-channel MOSFET like in ChipWhisperer-Lite

Glitch Shape

Power control



58

Another attack through SWD

• Core, SRAM, FMC – all tested

• Many untested peripherals TBD

• Maybe something will be useful 
even after disabling SWD

• Let's start simple



59

Peripheral: PIN pull-up



60

Peripheral: UART



61

Peripheral: UART+DMA from RAM?



62

Peripheral: UART+DMA from FLASH???

0x20002000 0x08000191 0x080001D9 0x080001D9 0x080001D9



63

Success table

Family MCU Release RDP2 GigaVulnerability #1 GigaVulnerability #2 GigaVulnerability #3

GD32F1x0 GD32F130C8T6 AJ2139

Yes

No

Yes

YesGD32F3x0 GD32F330C8T6 PJ2146 No

GD32F4xx GD32F405RGT6 JJ2239 Yes

GD32L23x GD32L233RCT6 MJ2306

Yes

No

NoGD32E23x GD32E230K8T6 JJ2125

Yes

GD32E50x GD32E503VCT6 MJ2119

GD32C10x GD32C103CBT6 JJ2232

No

GD32E10x GD32E103CBT6 JJ2153

GD32F20x GD32F205VCT6 AJ2139

GD32F30x GD32F303CGT6 JJ2121

GD32F403 GD32F403RGT6 JJ2117



64

FMC: E/L vs F family

• GD32E23x
• 0~2 waiting time within 64K bytes 

when CPU executes an instruction

• Almost the same for GD32L23x

• E/L doesn't cache flash pages 
on startup

• Small delay on each reset to 
read Option Bytes (~20µS, 
acceptable)

• Small race window on each 
reset

• GD32F1x0
• No waiting time within 32K bytes 

when CPU executes an instruction
• A long delay when fetching 32K ~ 

64K bytes data from flash

• Long delay on power-on reset 
(~18ms)
• Needed to fill the cache

• Option Bytes also cached

• Big race window on power-on 
reset

• No race window on other resets



65

Success table

Family MCU Release RDP2 GigaVulnerability #1 GigaVulnerability #2 GigaVulnerability #3

GD32F1x0 GD32F130C8T6 AJ2139

Yes

No

Yes

YesGD32F3x0 GD32F330C8T6 PJ2146 No

GD32F4xx GD32F405RGT6 JJ2239 Yes

GD32L23x GD32L233RCT6 MJ2306

Yes

No

NoGD32E23x GD32E230K8T6 JJ2125

Yes

GD32E50x GD32E503VCT6 MJ2119

GD32C10x GD32C103CBT6 JJ2232

No

GD32E10x GD32E103CBT6 JJ2153

GD32F20x GD32F205VCT6 AJ2139

GD32F30x GD32F303CGT6 JJ2121

GD32F403 GD32F403RGT6 JJ2117



66

Results

• Lots of experience in security of microcontrollers

• New techniques to bypass readout protection

• Three vulnerabilities reported to GigaDevice



67

Conclusions

• Some implementations of readout protection 
technologies are far from perfect

• Consider this when developing your own devices
• Restriction of physical access to the chip
• Control the accessibility of the end-product
• Other points

• In any case, one day your defense will be broken. 
Be prepared for this





69


